243 research outputs found

    Ocean-rafted pumice constrains postglacial relative sea-level and supports Holocene ice cap survival

    Get PDF
    Distally deposited tephra from explosive volcanic eruptions can be a powerful tool for precise dating and correlation of sedimentary archives and landforms. However, the morphostratigraphic and chronological potential of ocean-rafted pumice has been under-utilized considering its long observational history and widespread distribution on modern and palaeo-shorelines around the world. Here we analyze the geochemical composition and elevation data of 60 samples of ocean-rafted pumice collected since 1958 from raised beaches on Svalbard. Comparison of pumice data with postglacial relative sea-level history suggests eight distinct pumice rafting events throughout the North Atlantic during the Middle and Late Holocene. Analyzed ocean-rafted pumice exhibit consistent silicic composition characteristic of deposits from Iceland’s volcanic system, Katla. Eruption-triggered jökulhlaups are key drivers of the transport of pumice from the Katla caldera to beyond the coast of Iceland and into the surface currents of the North Atlantic Ocean. Thus, the correlation of distinct, high-concentration pumice horizons from Katla deposited along raised Middle Holocene beach ridges in Svalbard further advocates for the persistence of the Mýrdalsjökull ice cap through the Holocene thermal maximum

    “Trunk-like” heavy ion structures observed by the Van Allen Probes

    Get PDF
    Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report “trunk-like” ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6–2.6, magnetic local time (MLT) = 9.1–10.5, and magnetic latitude (MLAT) = −2.4–0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are energy = 4.5–0.7 keV, L = 3.6–2.5, MLT = 9.1–10.7, and MLAT = −2.4–0.4°. Results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species

    Simultaneous solution of Kompaneets equation and Radiative Transfer equation in the photon energy range 1 - 125 KeV

    Full text link
    Radiative transfer equation in plane parallel geometry and Kompaneets equation is solved simultaneously to obtain theoretical spectrum of 1-125 KeV photon energy range. Diffuse radiation field is calculated using time-independent radiative transfer equation in plane parallel geometry, which is developed using discrete space theory (DST) of radiative transfer in a homogeneous medium for different optical depths. We assumed free-free emission and absorption and emission due to electron gas to be operating in the medium. The three terms n,n2n, n^2 and (nxk)\displaystyle \bigg({\frac {\partial n}{\partial x_k}}\bigg) where nn is photon phase density and xk=(hνkTe)\displaystyle x_k= \bigg({\frac {h \nu} {k T_e}} \bigg) , in Kompaneets equation and those due to free-free emission are utilized to calculate the change in the photon phase density in a hot electron gas. Two types of incident radiation are considered: (1) isotropic radiation with the modified black body radiation IMBI^{MB} [1] and (2) anisotropic radiation which is angle dependent. The emergent radiation at τ=0\tau=0 and reflected radiation τ=τmax\tau=\tau_{max} are calculated by using the diffuse radiation from the medium. The emergent and reflected radiation contain the free-free emission and emission from the hot electron gas. Kompaneets equation gives the changes in photon phase densities in different types of media. Although the initial spectrum is angle dependent, the Kompaneets equation gives a spectrum which is angle independent after several Compton scattering times.Comment: 31 pages, 8 figures, Accepte

    Electron transport and energy relaxation in dilute magnetic alloys

    Full text link
    We consider the effect of the RKKY interaction between magnetic impurities on the electron relaxation rates in a normal metal. The interplay between the RKKY interaction and the Kondo effect may result in a non-monotonic temperature dependence of the electron momentum relaxation rate, which determines the Drude conductivity. The electron phase relaxation rate, which determines the magnitude of the weak localization correction to the resistivity, is also a non-monotonic function of temperature. For this function, we find the dependence of the position of its maximum on the concentration of magnetic impurities. We also relate the electron energy relaxation rate to the excitation spectrum of the system of magnetic impurities. The energy relaxation determines the distribution function for the out-of-equilibrium electrons. Measurement of the electron distribution function thus may provide information about the excitations in the spin glass phase.Comment: 15 pages, 5 figure

    Approximating a Behavioural Pseudometric without Discount for<br> Probabilistic Systems

    Full text link
    Desharnais, Gupta, Jagadeesan and Panangaden introduced a family of behavioural pseudometrics for probabilistic transition systems. These pseudometrics are a quantitative analogue of probabilistic bisimilarity. Distance zero captures probabilistic bisimilarity. Each pseudometric has a discount factor, a real number in the interval (0, 1]. The smaller the discount factor, the more the future is discounted. If the discount factor is one, then the future is not discounted at all. Desharnais et al. showed that the behavioural distances can be calculated up to any desired degree of accuracy if the discount factor is smaller than one. In this paper, we show that the distances can also be approximated if the future is not discounted. A key ingredient of our algorithm is Tarski's decision procedure for the first order theory over real closed fields. By exploiting the Kantorovich-Rubinstein duality theorem we can restrict to the existential fragment for which more efficient decision procedures exist

    Singularities In Scalar-Tensor Cosmologies

    Get PDF
    In this article, we examine the possibility that there exist special scalar-tensor theories of gravity with completely nonsingular FRW solutions. Our investigation in fact shows that while most probes living in such a Universe never see the singularity, gravity waves always do. This is because they couple to both the metric and the scalar field, in a way which effectively forces them to move along null geodesics of the Einstein conformal frame. Since the metric of the Einstein conformal frame is always singular for configurations where matter satisfies the energy conditions, the gravity wave world lines are past inextendable beyond the Einstein frame singularity, and hence the geometry is still incomplete, and thus singular. We conclude that the singularity cannot be entirely removed, but only be made invisible to most, but not all, probes in the theory.Comment: 23 pages, latex, no figure

    Wavy Strings: Black or Bright?

    Get PDF
    Recent developments in string theory have brought forth a considerable interest in time-dependent hair on extended objects. This novel new hair is typically characterized by a wave profile along the horizon and angular momentum quantum numbers l,ml,m in the transverse space. In this work, we present an extensive treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge at the `horizon' of a black string superposed with a vibration in any mode with l1l \ge 1. The same argument applied to longitudinal (l=0l=0) waves detects only finite tidal forces. We also provide an example with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular horizons.Comment: 45 pages, latex, no figure

    UHECR as Decay Products of Heavy Relics? The Lifetime Problem

    Full text link
    The essential features underlying the top-down scenarii for UHECR are discussed, namely, the stability (or lifetime) imposed to the heavy objects (particles) whatever they be: topological and non-topological solitons, X-particles, cosmic defects, microscopic black-holes, fundamental strings. We provide an unified formula for the quantum decay rate of all these objects as well as the particle decays in the standard model. The key point in the top-down scenarii is the necessity to adjust the lifetime of the heavy object to the age of the universe. This ad-hoc requirement needs a very high dimensional operator to govern its decay and/or an extremely small coupling constant. The natural lifetimes of such heavy objects are, however, microscopic times associated to the GUT energy scale (sim 10^{-28} sec. or shorter). It is at this energy scale (by the end of inflation) where they could have been abundantly formed in the early universe and it seems natural that they decayed shortly after being formed.Comment: 11 pages, LaTex, no figures, updated versio

    Pion emission from the T2K replica target: method, results and application

    Get PDF
    The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.Comment: updated version as published by NIM
    corecore